When Virtual Reality Meets the Classroom:

What Happens Next?

Julie Johnston & Michael Boyles
Julie Johnston
Director of Learning Spaces

Michael Boyles
Manager of the Advanced Visualization Labs
Where are you at with virtual reality?

Curious
Just getting started
Implemented a variety of models
Advanced – fully implemented

When poll is active, respond at PollEv.com/iulearning
Text IULEARNING to 37607 once to join
Mosaic classrooms represent a rich variety of learning spaces that meet widely varying instructional needs—much like the unique tiles that comprise a mosaic.

The Mosaic Initiative is IU’s active learning Initiative inspired by and tied to Mosaic classrooms.
“We believe space matters. We think that the classrooms should be more than four walls and chairs. Diverse tech-rich spaces can expand the boundaries of learning and encourage new ways of thinking.”

--Indiana University Learning Space Design Team
Informal Spaces

Collaboration

Classroom Spaces
Research Technologies
Advanced Visualization Lab (AVL)
Main support unit for visualization activities and technology at IU
Research Technologies
Advanced Visualization Lab (AVL)

20 year history supporting visualization and virtual reality (founded 1997)

Evolving Technology Strategy

1997 – mid early 2000s: “Flagship” facilities only

mid 2000s – early 2010s: Distributed visualization initiative

mid 2010s – forward: balance of Flagship and Distributed
AVL - Tech Strategy Influences

• User Access

• Ease of Use

• Utility across many domains \rightarrow software

• Commoditization & innovation of technology

• Costs – initial acquisition & refresh; remodeling costs

• Support model – staff, OS, software

• Space (!)

• Impact – users, decision makers, general public
AVL Distributed Vis – c. 2002-2008
AVL Distributed Vis – c. 2011
Currently 13 IQ-Walls on 2 IU campuses + external collaborators

Global Network Operations Center

Cyberinfrastructure Building

Global & International Studies Building

Mathers Museum of World Culture
AVL Balanced Vis Strategy – present
Reality Labs – Born from Collaboration
Why now?

- Inexpensive VR hardware
- Large and accessible VR software library
School of Media
FH 052 (classroom)
Advanced Visualization Lab
ICTC 414 (lab)
Advanced Visualization Lab
ICTC 403 (lab)
So what are Reality Labs?

• Classroom or lab spaces that contains some number of **Reality Stations**

• **Hardware components** of a Reality Station

 – VR equipment (tracked display + interface devices)
 • Currently prefer HTC Vive HMD, but workflows support Oculus Rift too

 – VR-capable computer
 • Acer and now MSI

 – High-quality monitor
 • High refresh, 4K, HDR
Software environment

Reality Stations are configured for VR,
but are great for non-VR uses too...

Windows software

- Unity & Unreal
- Adobe Creative Suite
- Microsoft Visual Studio
- Microsoft Office
- Web browsers
- Misc. utilities

30+ Steam VR applications

- Art & museum apps
- Simulations
- Media players
- Select games & experiences that demonstrate unique interfaces/capabilities of VR
Roles in supporting Reality Labs

- **Learning Technologies**
 - Student Technology Center
 - Reality Lab installation
 - Computer software builds, including Windows OS and Windows software
 - Technology Center Consulting
 - Routine check-ups (cable maintenance and cleaning)

- **Research Technologies**
 - Advanced Visualization Lab
 - VR tracking installation
 - Training material for installation & maintenance
 - Identify/develop/document VR software & workflows (Steam apps, Unity)
 - Advanced/custom user support on a per-project basis
Where are Reality Labs?

<table>
<thead>
<tr>
<th>Location</th>
<th>Type of space</th>
<th># of Stations</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Art, Architecture + Design – 2017</td>
<td>Classroom</td>
<td>1</td>
<td>IUB</td>
</tr>
<tr>
<td>Media School – 2017</td>
<td>Classroom</td>
<td>10</td>
<td>IUB</td>
</tr>
<tr>
<td>School of Art, Architecture + Design – 2017</td>
<td>Classroom</td>
<td>10</td>
<td>IUB</td>
</tr>
<tr>
<td>UITS Advanced Visualization Lab – 2017</td>
<td>Lab</td>
<td>2</td>
<td>IUB</td>
</tr>
<tr>
<td>UITS Advanced Visualization Lab – 2017</td>
<td>Lab</td>
<td>8</td>
<td>IUPUI</td>
</tr>
<tr>
<td>School of Art, Architecture + Design – 2017</td>
<td>Lab</td>
<td>2</td>
<td>IUB</td>
</tr>
<tr>
<td>UITS 3D Print & Modeling Lab – 2017</td>
<td>Lab</td>
<td>6</td>
<td>IUB</td>
</tr>
<tr>
<td>UITS Idea Garden – 2018</td>
<td>Lab</td>
<td>2</td>
<td>IUPUI</td>
</tr>
<tr>
<td>School of Informatics & Computing – 2018</td>
<td>Classroom</td>
<td>14</td>
<td>IUPUI</td>
</tr>
<tr>
<td>Additional classrooms & labs – 2018</td>
<td>Classroom & Labs</td>
<td>10-25</td>
<td>IUPUI, regional campuses</td>
</tr>
</tbody>
</table>
Before we talk about us, we want to hear from you!

Where do you think VR will have its most impact in the higher education setting?

When poll is active, respond at PollEv.com/iulearning ☎️ Text IULEARNING to 37607 once to join
How to Use Reality Labs?

<table>
<thead>
<tr>
<th>Use Case</th>
<th>VR App</th>
<th>Data</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrate existing VR applications and existing data into an existing curriculum</td>
<td>Pre-existing</td>
<td>Pre-existing</td>
<td>Easiest</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use provided Reality Station with provided or available VR applications and sample data</td>
</tr>
<tr>
<td>Use existing VR applications for viewing and interacting with your data</td>
<td>Pre-existing</td>
<td>Your</td>
<td>Moderate but interesting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Capture or create your own data and use existing VR applications to view it</td>
</tr>
<tr>
<td>Develop custom applications for viewing and interacting with your data</td>
<td>Your</td>
<td>Your</td>
<td>Programming required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use Unity (or similar tool) to create your VR environment or application and view your data</td>
</tr>
</tbody>
</table>
“My goal is to have students bring their imagination and research interests to the virtual worlds they create. I like them to define virtual reality as its own medium, separate from the tropes used in video games or cinema, and to concentrate on how they offer an experience to their visitors.”
Fortune 500 company Kimball asked Racek’s students to help imagine new co-working spaces. The students used VR to present their final proposals to Kimball in a much richer way than computer renderings would have allowed.
Students can now spend hours exploring VR applications on their own. In the past, we were limited to only 5-10 minute experiences during dedicated demo sessions.
Virtual reconstruction & preservation

Zeb Wood, Albert William, Andrea Copeland

IUPUI School of Informatics and Computing
Virtual reconstruction & preservation
Zeb Wood, Albert William, Andrea Copeland
IUPUI School of Informatics and Computing
Virtual reconstruction & preservation

Zeb Wood, Albert William, Andrea Copeland

IUPUI School of Informatics and Computing
But we’re just scratching the surface…
Lots of good apps for a variety of disciplines

Anatomy – *The Body VR: Journey Inside a Cell*

Interactive explode and selection modes for 6 human body systems
... other good apps for a variety of disciplines

VR Storytelling & Historic Recreation – *Apollo 11*

Cinematic & interactive modes
… other good apps for a variety of disciplines

Geography – Google Earth VR

Great interface orientation & landmark tour mode
... other good apps for a variety of disciplines

Music – *SoundStage*

Variety of instruments
... other good apps for a variety of disciplines

Astronomy – *Titans of Space*

Comparison, interactive, and tour modes
… other good apps for a variety of disciplines

Media Playback – *Simple VR Video Player*

Support for spherical & planar media (mono & stereo)
Excellent VR file browser
What about the future of Reality Labs?
Idea Garden

COMING SPRING 2018

IDEA GARDEN
CREATIVE LAB

IUPUI - Hine Hall
Emerging Technologies

Mobile computing (HMD, ibackpack, or phone)
Emerging Technologies

• Support for other types of “Reality”
 – Augmented Reality - headsets & tablets
 – Capturing Reality - 3D printing, scanning, and media capture

• Inside-out tracking: SLAM (simultaneous localization and mapping)
Challenges supporting Reality Labs

- Ironing out the kinks
 - Windows build and deployment challenges
 - Purchasing process with Steam (VR software library)
 - Documentation for installation & training
- VR apps change quickly
- Individuals requesting other VR or AR tech
- Non-STC locations require local IT support (not affiliated directly with central IT)
- Wireless or self-contained HMDs
- New faculty development & onboarding plan (at scale)